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Abstract

Lipids, which adopt nonbilayer phases, have fascinated researchers as to the functional roles of these components in
biomembranes. In particular, lipids capable of adopting the hexagonal H, phase have received considerable attention
because of the observation that such lipids can promote membrane fusion. In the rational design of lipid-based delivery
systems, H,, phase lipids have been employed to endow systems with fusogenic, membrane-destabilizing properties. We will
outline the molecular basis for the polymorphic phase behavior of lipids and highlight some of the uses of nonbilayer lipids
in the preparation of lipid-based delivery systems. In addition, a distinction will be drawn between lipid-based systems which
rely on the inclusion of nonbilayer lipids for activity, and systems which contain components which actively promote
formation of nonbilayer structure within biological membranes. [ 2001 Elsevier Science BV. All rights reserved.
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1. Introduction

- Enclosed bilayer membranes, or liposomes pre-
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utility as vehicles for drug delivery (for a historical
perspective see Ref. [1]). The study of isolated lipid
components of biological membranes in simplified
model membrane systems has alowed for the
characterization of lipids, which adopt a variety of
mesoscopic phases. Steps towards understanding the
functional roles of nonbilayer lipid components of
biomembranes [2—4] have been paralleled by efforts
in exploiting the polymorphic phase behavior of
lipids for the rational design of lipid-based intracellu-
lar delivery systems [5]. A simple example will
illustrate how knowledge of biological membrane
properties can lead to the rational design of a
triggered lipid-based delivery system.

The organization of lipid molecules in most
biological cell membranes is that of a bimolecular
layer of lipid molecules, or a bilayer [6]. The lipid
bilayer structure of biomembranes also encompas-
ses an extra level of complexity in its relatively
simple arrangement. Biomembranes are asymmetric
in composition. For example, the inner lipid mono-
layer of the erythrocyte membrane and indeed most
eukaryotic membranes is composed of phospha
tidylserine (PS) and phosphatidylethanolamine
(PE), while the outer monolayer harbors most of
the phosphatidylcholine (PC) and sphingomyelin
(SM). This inner membrane monolayer of the
erythrocyte is not stable in the presence of high
Ca’". In isolation, model bilayer membranes pre-
pared from the inner monolayer lipids PE and PS
exhibit fusogenic and polymorphic phase behavior
under conditions of elevated Ca>" [7] or reduced
pH [8]. Model membranes composed of PE and PS
were therefore formulated as pH-senstive
fusogenic liposomes [8]. These lipid vesicles can
be considered prototypes for an entire class of pH-
triggered liposomal systems which rely on a mix-
ture of nonbilayer lipid which is conditionally
stabilized by ionizable amphiphils [9]. pH-sensitive
liposomes are only one class of lipid-based deliv-
ery systems which rely on the control of bilayer to
nonbilayer phase transition for activity.

In this review, lipid polymorphism and its role in
the design of lipid-based intracellular delivery sys-
tems will be discussed. Emphasis is placed on
mechanisms, which may be used to modulate the
structure of lipid assemblies and promote destabiliza-
tion of liposomal vectors and cellular membranes.

2. Lipids can assemble into a variety of
structures

Upon dispersion in water, amphiphilic molecules
can self-assemble into a variety of different struc-
tures. Many reviews have been written on the
polymorphic phase behavior of lipids [2,4,10,11].
Lipids such as PC adopt bilayer phases upon hydra-
tion, whereas fatty acids and lysolipids can adopt a
micellar arrangement in water (Fig. 1). Of particular
interest are lipids such as unsaturated PE which
comprises a significant proportion of the lipids in
biomembranes and in isolation adopts the inverted
hexagonal (H,,) phase. For example, dioleoylphos-
phatidylethanolamine (DOPE) forms a bilayer phase
below 10°C, while at elevated temperatures DOPE
adopts the H,, phase [12]. Formation of the H,,
phase is promoted by increasing acyl chain unsatura-
tion and increasing temperature [13].

Lipids can also adopt some interesting non-vesicle
bilayer structures. PS, for example, forms cochleate
cylinders in the presence of calcium [14] while the
galactosylcerebroside (GalCer) lipids can adopt
bilayers which assemble into helical ribbons and
nanotubes [15]. Lipid structures such as the
nanotubes hold promise for rapid protein crystalliza-
tion and structure determination using electron mi-
croscopy techniques [16].

3. Theory of lipid polymorphism

““Molecular shape’” arguments have been used to
rationalize the phase behavior of lipids [10]. Lipids
with alarge headgroup area and a small hydrocarbon
area have a cone-like geometry, self-assemble into
micelles and are said to exhibit positive membrane
curvature (Fig. 1A). Lipids, which are cylindrical in
shape, having nearly equal headgroup to hydrocar-
bon area, self-assemble into lipid bilayers (Fig. 1B).
Alternatively, lipids with small headgroup areas
adopt “inverted” lipid phases such as the inverted
hexagonal (H,,) phase or cubic phases and are said
to exhibit negative membrane curvature (Fig. 1C).
Thus, complementary mixtures of nonbilayer micel-
lar lipids and nonbilayer H,, phase preferring lipids
can adopt bilayer phases [17,18]. In addition, mix-
tures of oppositely charged surfactants, which form
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Fig. 1. Molecular geometry of lipids and the predicted self-assembly of morphologically distinct structures.

micellar structures in isolation, can spontaneously
assemble into bilayer vesicles [19]. The behavior of
mixed anionic and cationic surfactant systems can be
rationalized as arising from the reduction in surfac-
tant headgroup size and increase in hydrophobic area
following formation of cationic—anionic di-acyl zwit-
terions which have a molecular shape compatible
with the formation of bilayer structure. The effective
molecular shape and consequently lipid phase be-
havior can also be modulated by changes in hydra-
tion, state of ionization, presence of divalent cations
and temperature [2].

4. Nonbilayer lipids and membrane fusion

Membrane fusion is a ubiquitous process in bio-
logical systems and involves the union of two
opposing bilayers in order to complete processes
such as exocytosis or viral infection. A local de-

parture from the bilayer structure must take place in
order to alow two lipid membranes to merge into
one. Little is known about the structure of these
membrane intermediates, which are involved in
membrane fusion in biological systems. However,
the study of membrane fusion in model lipid systems
has provided a guide to understanding some of the
factors, which may underlie membrane dynamics in
biological fusion events.

Lipidic particles observed by freeze—fracture were
first interpreted to be inverted micelles formed at the
junctions between lipid bilayers undergoing mem-
brane fusion [20] (Fig. 2). Alternatively, the lipidic
particles observed by freeze—fracture techniques may
be related to the formation of the ‘‘stalk’ inter-
mediate of membrane fusion as defined by Markin et
a. [21] and later developed by Chernomordik and
Zimmerberg [22] and Siegel [23]. In the stalk theory
of membrane fusion, two apposed bilayers undergo a
union of the contacting monolayers through the
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Fig. 2. Proposed intermediates of membrane fusion. Two apposed bilayers are schematically represented to undergo fusion through either an
inverted micelle intermediate (IMI) or the stalk and transmembrane contact (TMC) intermediates.

formation of a semi-toroidal lipidic structure called
the stak (Fig. 2). It has been proposed that the
expansion of the stalk intermediate produces a
transmonolayer contact (TMC) which ruptures due
to increasing mechanical tension to produce the
fusion pore. Time-resolved cryoelectron microscopy
has been used to directly visualize TMC-like struc-
tures formed in the early stages of pure lipid vesicle
fusion [24].

The geometry of the stalk intermediate favors the
incorporation of lipids, which exhibit negative mem-
brane curvature. Lipids such as unsaturated phos-
phatidylethanolamine which has a cone, or wedge
structure have compatible shape to incorporate into
the highly bent stalk intermediate. Conversely,

micellar lipids, which exhibit positive membrane
curvature, have a shape, which is incompatible with
the orientation of lipids proposed in the stalk struc-
ture. Indeed, a correlation is observed between the
shapes of lipids in the contacting monolayers and
membrane fusion. Inverted hexagona phase-adopt-
ing lipids such as DOPE [12] or protonated PS [25]
promote fusion of lipid vesicles [26], while micellar
lysolipids inhibit fusion of large unilamellar vesicles
(LUV9 and virosomes when applied to the outer
lipid monolayers [27] lending indirect support to the
stalk mechanism of membrane fusion. Chernomordik
et a. have demonstrated the inhibitory effect of
lysolipids on biological membrane fusion events.
Addition of lysolipids to the contacting membrane
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monolayers inhibited sea urchin egg cortical ex-
ocytosis, mast cell degranulation, rat liver micro-
some—microsome fusion, and viral fusion [28]. This
indicates that membrane fusion in biological and
model systems is highly dependent on the physical
properties of the contacting lipid monolayers.

5. DOPE: the king of nonbilayer lipids

DOPE is the most commonly utilized nonbilayer
lipid for the preparation of so-called *‘fusogenic”
lipid-based delivery systems [5]. The clam that
DOPE is a ‘““fusogenic lipid”’ is derived from the
ability of DOPE to adopt the inverted hexagonal
phase in isolation [12]. It has been demonstrated that
lipids which adopt inverted lipid phases promote
fusion of lipid bilayers [7,26] and structura inter-
mediates involved in membrane fusion are similar to
those involved in bilayer to H, phase transitions
[24,29]. One appealing physical parameter of DOPE
is that it forms the H,, phase above 10°C and
therefore, at physiological temperatures, DOPE pre-
fers a nonbilayer phase [12]. However, caution must
be taken when interpreting data relating to the
behavior of DOPE-containing systems at low tem-
peratures, for example for cell culture experiments
performed a 4°C when DOPE prefers a bilayer
phase [30].

The primary route of internalization of liposomes
by cells is the endocytic pathway via clathrin-coated
pits [31-35]. Therefore, a main barrier in lipid-based
drug delivery is the escape of hydrolytically sensitive
material from degradation in lysosomes, which in
this review will be referred to as intracellular deliv-
ery. Inclusion of DOPE into lipid-based drug deliv-
ery systems such as pH-sensitive liposomes [36],
target-sensitive  immunoliposomes [37], cationic
lipoplexes [38], stabilized plasmid lipid particles
(SPLPs) [39], and programmable fusogenic vesicles
(PFVs) [40] has been found to be a key factor for
intracellular delivery. Replacement of the H,,-phase
lipid DOPE with the bilayer lipid dioleoylphos-
phatidylcholine (DOPC) either completely inhibits or
severely attenuates intracellular delivery. In addition,
designer lipids such as polymer conjugated poly-
(ethylene glycol) (PEG)-lipids which stabilize
DOPE into a bilayer aso have inhibitory effects on

liposome fusion [41] and on intracellular delivery
[42]. Although the use of DOPE has proven highly
successful, few studies have investigated the formu-
lation of lipid-based delivery systems, which utilize
other nonbilayer lipids such as highly unsaturated
phosphatidylethanolamines or structurally dissimilar
lipids such as diacylglycerol, monoolein, or mono-
galactosyldiacylglyceral.

6. Nonbilayer lipids and pH-sensitive liposomes

If ionizable lipids are incorporated into bilayer
phases with DOPE, the stability of the bilayer is
conditional on the pH, which controls the structural
preferences of the ionizable lipid. The first system
described as a fusogenic pH-sensitive liposome was
composed of PS-DOPE (2:8 molar ratio) [8]. These
vesicles were stable at neutral pH, but underwent
fusion at acidic pH values. PS itself adopts a bilayer
phase on hydration at neutral pH values, however,
below pH 4, unsaturated PS species are known to
adopt the inverted hexagona phase [25]. Thus at
acidic pH, PS-DOPE liposomes contain only lipids
which prefer a nonbilayer phase, and as a result are
unstable and fusogenic. A variety of different lipid
combinations have been used to prepare pH-sensitive
liposomes (Table 1).

The potential to use pH-sensitive liposomes for
intracellular delivery was highlighted by Straubinger
et al. They demonstrated that anionic liposomes are
taken up by CV-1 cdls through endocytosis and
encounter a low pH compartment [31]. Shortly
following this discovery, pH-sensitive liposomes
prepared from the nonbilayer lipid DOPE and oleic
acid were shown to mediate the release of the
encapsulated fluorescent dye calcein into the cyto-
plasm of cultured cells [36]. pH-sensitive liposomes
have since been used for intracellular delivery of a
variety of macromolecules including nucleic acids
such as DNA and antisense oligonucleotides, protein
toxins, and antibiotics. An overview of the various
macromolecules introduced into cells using pH-
sengitive liposomes is presented in Table 2.

The mechanism of intracellular delivery via pH-
sengitive liposomes is not well-defined [5,9]. Follow-
ing endocytosis it is proposed that pH-sensitive
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Table 1

pH-sensitive liposome formulations

Nonbilayer lipid Titratable lipid Ref.
DOPE Phosphatidylserine [8]
DOPE Palmitoylhomocysteine (PHC) [43]
DOPE Cholesteryl hemisuccinate (CHEMS) [44]
DOPE N-Succinyldioleoyl phosphatidylethanolamine (N-Succ-DOPE) [45]
DOPE Oleic acid [46]
DOPE Series of double-chain amphiphiles [47]
DOPE Diacylsuccinylglycerols (SGs) [48]
POPE a-Tocopherol hemisuccinate [49]
DOPE Sulfatide [50]
Table 2

Intracellular delivery using pH-sensitive liposomes

Entrapped molecule Assay method Lipid formulation Ref.
Calcein Fluorescence microscopy Oleic acid/DOPE [36]
Calcein Fluorescence microscopy PHC/DOPE [51]
Arabinoside-C Cell killing Oleic acid/DOPE [52]
Diphtheria Toxin A Cell killing Oleic acid/DOPE [53]
CAT-Plasmid DNA CAT activity Oleic acid/Chol / DOPE [54]
FITC-Dextran Fluorescence microscopy CHEMS/DOPE [55]
(4.2 kDa)

Ovabumin MHC class-1 presentation SG/DOPE [56]
Oligonuclectide Friend retrovirus inhibition Oleic acid/Chol /DOPE [57]
PolylC RNA IFN production Oleic acid/Chol /DOPE [58]
Superoxide dismutase (SOD) Cell-associated SOD activity SG/DOPE [59]
Listeriolysin O/ovabumin Fluorescence microscopy/

and HPTS MHC class-| presentation CHEMS/DOPE [60]
Gentamycin Bacterial killing N-Succ-DOPE/DOPE [42]

liposomes undergo destabilization and leakage upon
encountering an intracellular acidic stimulus. This
may lead to the release of the liposomal contents
within acidic endosoma compartments. Alternative-
ly, if close proximity is achieved between the
liposome and the lumenal membrane of the endo-
some at the time of acidification, destabilization of
the endosomal membrane may result from the prefer-
ence of the pH-sensitive liposomal lipids for non-
bilayer phases.

7. pH-senditive liposomes composed of mixtures
of anionic and cationic lipids

We have recently shown that pH-sensitive lipo-
somes may be prepared by using a different strategy
[61]. Mixtures of the anionic lipid cholesteryl hemi-
succinate (CHEMS) and the cationic lipid
dioloeyldimethylammoinum chloride (DODAC) can
be used to prepare negatively charged vesicles at
dlightly alkaline pH values, which undergo fusion as
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the pH is reduced. The particular advantage of this
system is that the pH at which membrane fusion
occurs can be readily and predictably tuned by
adjusting the ratio of anionic to cationic lipids [61].
In these systems there is no nonbilayer lipid com-
ponent per se. However, we have found that equimo-
lar mixtures of the anionic lipid CHEMS and the
cationic lipid DODAC [61] as well as mixtures of
anionic phospholipids and cationic lipids adopt non-
bilayer phases such as the hexagonal H, phase
[61,62]. Thus in tunable pH-sensitive liposomes, the
excess anionic lipid acts to stabilize the remaining
anionic—cationic lipid pairs, and fusion occurs upon
neutralization of vesicle surface charge [61].

“Molecular shape’ arguments can be used to
rationalize the phase behavior of mixtures of anionic
and cationic lipids. Separately anionic and cationic
lipids adopt bilayer phases, yet in neutralized mix-
tures nonbilayer phases are preferred. As with mix-
tures of oppositely charged surfactants [19] which
undergo a micelle to bilayer transition due to a
reduction in spontaneous monolayer curvature, oppo-
sitely charged bilayer-forming lipids would be ex-
pected to also undergo a decrease in monolayer
curvature due to the formation of cationic—anionic
lipid pairs. Formation of such ion pairs would be
expected to exclude counter-ions and their associated
water molecules thus reducing hydration and re-
sulting in formation of a cone-shaped zwitterion
capable of adopting H,, phase structure.

8. Role of nonbilayer lipids in transfection
mediated by cationic lipoplexes

The interesting polymorphism observed with mix-
tures of anionic and cationic lipids lead us to
investigate possible intracellular interactions between
cationic lipids and cellular anionic phospholipids.
Szoka Jr. and co-workers have previously shown that
cationic lipid—nucleic acid lipoplexes release associ-
ated nucleic acids upon interaction with anionic
liposomes [63,64]. Further work showed that ion-
pairs are formed between anionic and cationic lipids
following displacement of nucleic acid polymers
from cationic lipids by anionic lipids [65].

The transfection potency of most cationic lipo-

some formulations can be enhanced by the presence
of the H,, phase forming lipid DOPE [38,66—70]. We
have recently demonstrated that cationic lipids are
able to actively induce H,, phase structure in mix-
tures with anionic phospholipids. Thus helper lipids
such as DOPE appear to potentiate the ability of
cationic lipids to induce nonbilayer structure of
biological membranes (Hafez and Cullis, submitted).
We suggest that the ability of cationic lipids to
induce nonbilayer phases in the presence of anionic
lipids is critical to the mechanism of how cationic
lipids promote intracellular delivery of macromole-
cules such as plasmid DNA. In addition, agents
which are known to promote nonbilayer phases in
model membranes can aso enhance transfection.
Examples of these agents include calcium [71] and
polylysine [67] which can enhance cationic lipoplex
transfection and also induce nonbilayer phase transi-
tions in anionic phospholipid mixtures [2,25].

Conversely, lipids, which promote bilayer or
micelle formation, are found to strongly inhibit
transfection. These lipids include bilayer-forming
species such as DOPC [38], and micellar lipids such
as PEG—PE [72] both of which are able to stabilize
against the formation of the hexagonal H, phase
[18,73].

A strong correlation is therefore observed between
the potentiation of transfection and the inclusion of
H, phase lipids in cationic lipoplexes. Cationic
lipids, which themselves actively promote the forma-
tion of the H,, phase in mixtures with bilayer-
forming anionic phospholipids, should be considered
extremely potent bilayer-destabilizing agents. In
support of this, cationic lipids are often observed to
promote enhanced transfection levels in the absence
of helper lipids such as DOPE [74-76].

9. Conclusions

The potential of lipid-based systems lies within the
diversity of lipid components that can be employed
to prepare systems with a wide variety of properties
[77]. A distinction should be made between systems,
which rely on components to modulate the structural
behavior of the carrier system and those systems,
which contain agents that can actively participate in
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the destabilization of cellular target membranes.
Lipids such as DOPE may have activity in both
capacities, while the cationic lipids used to formulate
cationic—nucleic acid lipoplexes can actively modu-
late the phase behavior of bilayer assemblies con-
taining anionic phospholipids. Investigation into
agents that produce similar specific polymorphic
effects on biomembranes such as fusogenic peptides
[78] warrants continued investigation.
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